Document AI API API Reference

Use next-generation AI to extract data, fields, insights and text from documents. Instantly.

Swagger OpenAPI Specification | .NET Framework Client | .NET Core Client | Java Client | Node.JS Client | Python Client | Drupal Client

Terms of Service: https://portal.cloudmersive.com/terms-of-service
Version: v1

Authentication

Apikey

API Key Authentication

type
apiKey
name
Apikey
in
header

Analyze

Enforce Policies to a Document to allow or block it using Advanced AI

POST /document-ai/document/analyze/enforce-policy


Enforce Policies to a Document to allow or block it using Advanced AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.



Input request, including document and policy rules

Code Example:
Request Content-Types: application/json, text/json, application/*+json
Request Example
{
  "InputFile": "string (byte)",
  "Rules": [
    {
      "RuleId": "string",
      "RuleType": "string",
      "RuleDescription": "string"
    }
  ]
}
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "CleanResult": "boolean",
  "RiskScore": "number (double)",
  "RuleViolations": [
    {
      "RuleId": "string",
      "RuleViolationRiskScore": "number (double)",
      "RuleViolationRationale": "string"
    }
  ]
}

Extract

Extract Text from a Document using AI

POST /document-ai/document/extract/text


Extract raw text from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Supports a wide range of languages. Consumes 100 API calls per page.



recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

InputFile: file
in formData

Input document, or photos of a document, to extract data from

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "PageResults": [
    {
      "PageNumber": "integer (int32)",
      "TextResult": "string"
    }
  ]
}

Extract Field Values from a Document using AI

POST /document-ai/document/extract/fields


Extract Field Values (e.g. Invoice Number, Invoice Date, Business Card Phone Number, etc.) from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.



FieldNames: string
in header

Desired fields to extract, comma separated

recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

InputFile: file
in formData

Input document, or photos of a document, to extract data from

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "Results": [
    {
      "FieldName": "string",
      "FieldStringValue": "string"
    }
  ]
}

Extract Field Values from a Document using Advanced AI

POST /document-ai/document/extract/fields/advanced


Extract Field Values (e.g. Invoice Number, Invoice Date, Business Card Phone Number, etc.) from a document using Advanced AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.



Input request, including document file as byte array, and information on which fields to extract

recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

Code Example:
Request Content-Types: application/json, text/json, application/*+json
Request Example
{
  "InputFile": "string (byte)",
  "FieldsToExtract": [
    {
      "FieldName": "string",
      "FieldOptional": "boolean",
      "FieldDescription": "string",
      "FieldExample": "string"
    }
  ],
  "MaximumPagesProcessed": "integer (int32)",
  "Preprocessing": "string",
  "ResultCrossCheck": "string",
  "RotateImageDegrees": "number (double)"
}
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "Results": [
    {
      "FieldName": "string",
      "FieldStringValue": "string"
    }
  ],
  "ConfidenceScore": "number (double)"
}

Extract Tables of Data from a Document using AI

POST /document-ai/document/extract/tables


Extract Tables, comprised of rows and columns of data, from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumeds 100 API calls per page.



recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

InputFile: file
in formData

Input document, or photos of a document, to extract data from

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "TableResults": [
    {
      "Title": "string",
      "Rows": [
        {
          "Cells": [
            {
              "CellHeader": "string",
              "CellValue": "string"
            }
          ]
        }
      ]
    }
  ]
}

Extract Barcodes of from a Document using AI

POST /document-ai/document/extract/barcodes


Extract all barcodes from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.



recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

InputFile: file
in formData

Input document, or photos of a document, to extract data from

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "BarcodeResults": [
    {
      "BarcodeType": "string",
      "BarcodeValue": "string"
    }
  ]
}

Extract All Fields and Tables of Data from a Document using AI

POST /document-ai/document/extract/all


Extract all Fields and Tables, comprised of rows and columns of data, from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.



recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

InputFile: file
in formData

Input document, or photos of a document, to extract data from

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "FieldResults": [
    {
      "FieldName": "string",
      "FieldStringValue": "string"
    }
  ],
  "TableResults": [
    {
      "Title": "string",
      "Rows": [
        {
          "Cells": [
            {
              "CellHeader": "string",
              "CellValue": "string"
            }
          ]
        }
      ]
    }
  ]
}

Extract Classification or Category from a Document using AI

POST /document-ai/document/extract/classify


Extract Classification or Category (e.g. Invoice, Receipt, Tax Form, or Form 1040, Form 1040 EZ, etc.) from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.



Categories: string
in header

Desired classification to extract

recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

InputFile: file
in formData

Input document, or photos of a document, to extract data from

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "DocumentCategoryResult": "string"
}

Extract Classification or Category from a Document using Advanced AI

POST /document-ai/document/extract/classify/advanced


Extract Classification or Category (e.g. Invoice, Receipt, Tax Form, or Form 1040, Form 1040 EZ, etc.) from a document using Advanced AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.



Input request to perform the classification on

recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

Code Example:
Request Content-Types: application/json, text/json, application/*+json
Request Example
{
  "InputFile": "string (byte)",
  "Categories": [
    {
      "CategoryName": "string",
      "CategoryDescription": "string"
    }
  ],
  "Preprocessing": "string",
  "ResultCrossCheck": "string",
  "MaximumPagesProcessed": "integer (int32)",
  "RotateImageDegrees": "number (double)"
}
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "DocumentCategoryResult": "string",
  "ConfidenceScore": "number (double)"
}

Extract Summary from a Document using AI

POST /document-ai/document/extract/summary


Creates a 1 paragraph summary of the input document using Artificial Intelligence. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.



recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

InputFile: file
in formData

Input document, or photos of a document, to extract data from

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "DocumentSummaryText": "string"
}

RunBatchJob

Extract Text from a Document using AI as a Batch Job

POST /document-ai/document/batch-job/extract/text


Creates an async batch job for processing a large document as an AI batch job. Input document formats supported include DOCX, PDF, PNG and JPG. Supports a wide range of languages. Requires Managed Instance or Private Cloud deployment.



recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

InputFile: file
in formData

Input document, or photos of a document, to extract data from

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "AsyncJobID": "string"
}

Extract Field Values from a Document using Advanced AI as a Batch Job

POST /document-ai/document/batch-job/extract/fields/advanced


Creates an async batch job for processing a large document as an AI batch job. Extract Field Values (e.g. Invoice Number, Invoice Date, Business Card Phone Number, etc.) from a document using Advanced AI. Input document formats supported include DOCX, PDF, PNG and JPG. Requires Managed Instance or Private Cloud deployment.



recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

Code Example:
Request Content-Types: application/json, text/json, application/*+json
Request Example
{
  "InputFile": "string (byte)",
  "FieldsToExtract": [
    {
      "FieldName": "string",
      "FieldOptional": "boolean",
      "FieldDescription": "string",
      "FieldExample": "string"
    }
  ],
  "MaximumPagesProcessed": "integer (int32)",
  "Preprocessing": "string",
  "ResultCrossCheck": "string",
  "RotateImageDegrees": "number (double)"
}
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "AsyncJobID": "string"
}

Extract All Fields and Tables of Data from a Document using AI as a Batch Job

POST /document-ai/document/batch-job/extract/all


Creates an async batch job for processing a large document as an AI batch job. Extract all Fields and Tables, comprised of rows and columns of data, from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Requires Managed Instance or Private Cloud deployment.



recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

InputFile: file
in formData

Input document, or photos of a document, to extract data from

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "AsyncJobID": "string"
}

Extract Classification or Category from a Document using AI as a Batch Job

POST /document-ai/document/batch-job/extract/classify


Creates an async batch job for processing a large document as an AI batch job. Extract Classification or Category (e.g. Invoice, Receipt, Tax Form, or Form 1040, Form 1040 EZ, etc.) from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Requires Managed Instance or Private Cloud deployment.



Categories: string
in header

Desired classification to extract

recognitionMode: string
in header

Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images

InputFile: file
in formData

Input document, or photos of a document, to extract data from

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "AsyncJobID": "string"
}

Get the status and result of an Extract Document Batch Job

GET /document-ai/document/batch-job/batch-job/status


Returns the result of the Async Job - possible states can be STARTED or COMPLETED. This API is only available for Cloudmersive Managed Instance and Private Cloud deployments.



AsyncJobID: string
in query

(no description)

Code Example:
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
  "Successful": "boolean",
  "AsyncJobStatus": "string",
  "AsyncJobID": "string",
  "ExtractTextResult": {
    "Successful": "boolean",
    "PageResults": [
      {
        "PageNumber": "integer (int32)",
        "TextResult": "string"
      }
    ]
  },
  "ExtractFieldsAndTablesResult": {
    "Successful": "boolean",
    "FieldResults": [
      {
        "FieldName": "string",
        "FieldStringValue": "string"
      }
    ],
    "TableResults": [
      {
        "Title": "string",
        "Rows": [
          {
            "Cells": [
              {
                "CellHeader": "string",
                "CellValue": "string"
              }
            ]
          }
        ]
      }
    ]
  },
  "ExtractFieldsResult": {
    "Successful": "boolean",
    "Results": [
      {
        "FieldName": "string",
        "FieldStringValue": "string"
      }
    ]
  },
  "ExtractClassificationResult": {
    "Successful": "boolean",
    "DocumentCategoryResult": "string"
  },
  "ErrorMessage": "string"
}

Schema Definitions

AdvancedExtractClassificationRequest: object

Request to perform an AI document classification on a document

InputFile: string (byte)

Input document file to perform the operation on as a byte array

Categories: DocumentCategories

Possible categories for the document

DocumentCategories
Preprocessing: string

Optional: Set the level of image pre-processing to enhance accuracy. Possible values are 'Auto', 'SmoothEdges', 'SmoothEdgesPlus', 'Compatability' and 'None'. Default is Auto. Set to SmoothEdges to smooth harsh edges in the input image to enhance recognition accuracy. Set to SmoothEdgesPlus to smooth harsh edges to a higher degree. Set to Compatability for maximum PDF feature compatability.

ResultCrossCheck: string

Optional: Set the level of output accuracy cross-checking to perform on the input. Possible values are 'None', 'Advanced', 'Ultra' and 'Hyper'. Default is None. Ultra and Hyper will produce the highest accuracy but at the cost of longer processing times.

MaximumPagesProcessed: integer (int32)

Optional: Limit the number of pages processed

RotateImageDegrees: number (double)

Optional: Rotate the input image before recognition by the specified number of degrees; valid values range from -360 to +360.

Example
{
  "InputFile": "string (byte)",
  "Categories": [
    {
      "CategoryName": "string",
      "CategoryDescription": "string"
    }
  ],
  "Preprocessing": "string",
  "ResultCrossCheck": "string",
  "MaximumPagesProcessed": "integer (int32)",
  "RotateImageDegrees": "number (double)"
}

AdvancedExtractFieldsRequest: object

Request to perform an AI field extraction on a document

InputFile: string (byte)

Input document file to perform the operation on as a byte array

FieldsToExtract: FieldToExtract

Fields to extract from the document

FieldToExtract
MaximumPagesProcessed: integer (int32)

Optional: Limit the number of pages processed

Preprocessing: string

Optional: Set the level of image pre-processing to enhance accuracy. Possible values are 'Auto', 'SmoothEdges', 'SmoothEdgesPlus', 'ContrastEdges', 'ContrastEdgesPlus', 'Invert', 'Binarize', 'Compatability' and 'None'. Default is Auto. Set to SmoothEdges to smooth harsh edges in the input image to enhance recognition accuracy. Set to SmoothEdgesPlus to smooth harsh edges to a higher degree. Set to ContrastEdges and ContrastEdgesPlus to enhance contrast and readability for low quality black and white or grayscale images. Set to Invert to invert the input image. Set to Binarize to binarize the input image. Set to Compatability for maximum PDF feature compatability.

ResultCrossCheck: string

Optional: Set the level of output accuracy cross-checking to perform on the input. Possible values are 'None', 'Advanced' and 'Ultra'. Default is None. Ultra will produce the highest accuracy but at the cost of longer processing times.

RotateImageDegrees: number (double)

Optional: Rotate the input image before recognition by the specified number of degrees; valid values range from -360 to +360.

Example
{
  "InputFile": "string (byte)",
  "FieldsToExtract": [
    {
      "FieldName": "string",
      "FieldOptional": "boolean",
      "FieldDescription": "string",
      "FieldExample": "string"
    }
  ],
  "MaximumPagesProcessed": "integer (int32)",
  "Preprocessing": "string",
  "ResultCrossCheck": "string",
  "RotateImageDegrees": "number (double)"
}

DocumentAdvancedClassificationResult: object

Result of classifying a document using AI

Successful: boolean

True if successful, false otherwise

DocumentCategoryResult: string

Category applied to the document; if a category could not be identified then "other" will be used. Spaces are replaced with underscores.

ConfidenceScore: number (double)

Confidence score between 0.0 and 1.0, where values > 0.8 indicate high confidence

Example
{
  "Successful": "boolean",
  "DocumentCategoryResult": "string",
  "ConfidenceScore": "number (double)"
}

DocumentCategories: object

Document category option

CategoryName: string

Name of the classification

CategoryDescription: string

Optional but recommended: Description of the classification in natural langugage

Example
{
  "CategoryName": "string",
  "CategoryDescription": "string"
}

DocumentClassificationResult: object

Result of classifying a document using AI

Successful: boolean

True if successful, false otherwise

DocumentCategoryResult: string

Category applied to the document; if a category could not be identified then "other" will be used. Spaces are replaced with underscores.

Example
{
  "Successful": "boolean",
  "DocumentCategoryResult": "string"
}

DocumentPolicyRequest: object

Request to analyze a document

InputFile: string (byte)

Input file as a byte array

Rules: PolicyRule

Rules to apply to the document

PolicyRule
Example
{
  "InputFile": "string (byte)",
  "Rules": [
    {
      "RuleId": "string",
      "RuleType": "string",
      "RuleDescription": "string"
    }
  ]
}

DocumentPolicyResult: object

Result of performing a document policy enforcement operation

CleanResult: boolean

True if the document complies with all of the policies, and false if it does not

RiskScore: number (double)

Risk score between 0.0 and 1.0 where values above 0.5 are increasing levels of risk

RuleViolations: PolicyRuleViolation

Policy violations

PolicyRuleViolation
Example
{
  "CleanResult": "boolean",
  "RiskScore": "number (double)",
  "RuleViolations": [
    {
      "RuleId": "string",
      "RuleViolationRiskScore": "number (double)",
      "RuleViolationRationale": "string"
    }
  ]
}

ExtractBarcodesAiResponse: object

Result of extracting barcodes from a document

Successful: boolean

True if successful, false otherwise

BarcodeResults: ExtractedBarcodeItem

Table value results from the extraction operation

ExtractedBarcodeItem
Example
{
  "Successful": "boolean",
  "BarcodeResults": [
    {
      "BarcodeType": "string",
      "BarcodeValue": "string"
    }
  ]
}

ExtractDocumentBatchJobResult: object

Result of performing a split document batch job

Successful: boolean

True if successful, false otherwise

AsyncJobID: string

When creating a job, an Async Job ID is returned. Use the GetAsyncJobStatus API to check on the status of this job using the AsyncJobID and get the result when it finishes

Example
{
  "Successful": "boolean",
  "AsyncJobID": "string"
}

ExtractDocumentJobStatusResult: object

Result of performing a batch job operation

Successful: boolean

True if the operation to check the status of the job was successful, false otherwise

AsyncJobStatus: string

Returns the job status of the Async Job, if applicable. Possible states are STARTED and COMPLETED

AsyncJobID: string

Job ID

ExtractTextResult: ExtractTextResponse
ExtractFieldsAndTablesResult: ExtractFieldsAndTablesResponse
ExtractFieldsResult: ExtractFieldsResponse
ExtractClassificationResult: DocumentClassificationResult
ErrorMessage: string

Error message (if any)

Example
{
  "Successful": "boolean",
  "AsyncJobStatus": "string",
  "AsyncJobID": "string",
  "ExtractTextResult": {
    "Successful": "boolean",
    "PageResults": [
      {
        "PageNumber": "integer (int32)",
        "TextResult": "string"
      }
    ]
  },
  "ExtractFieldsAndTablesResult": {
    "Successful": "boolean",
    "FieldResults": [
      {
        "FieldName": "string",
        "FieldStringValue": "string"
      }
    ],
    "TableResults": [
      {
        "Title": "string",
        "Rows": [
          {
            "Cells": [
              {
                "CellHeader": "string",
                "CellValue": "string"
              }
            ]
          }
        ]
      }
    ]
  },
  "ExtractFieldsResult": {
    "Successful": "boolean",
    "Results": [
      {
        "FieldName": "string",
        "FieldStringValue": "string"
      }
    ]
  },
  "ExtractClassificationResult": {
    "Successful": "boolean",
    "DocumentCategoryResult": "string"
  },
  "ErrorMessage": "string"
}

ExtractFieldsAdvancedResponse: object

Result of extracting fields from a document

Successful: boolean

True if successful, false otherwise

Results: FieldAdvancedValue

Field value results from the extraction operation

FieldAdvancedValue
ConfidenceScore: number (double)

Confidence score between 0.0 and 1.0, where values > 0.8 indicate high confidence

Example
{
  "Successful": "boolean",
  "Results": [
    {
      "FieldName": "string",
      "FieldStringValue": "string"
    }
  ],
  "ConfidenceScore": "number (double)"
}

ExtractFieldsAndTablesResponse: object

Result of extracting fields from a document

Successful: boolean

True if successful, false otherwise

FieldResults: FieldValue

Field value results from the extraction operation

FieldValue
TableResults: TableResult

Table value results from the extraction operation

TableResult
Example
{
  "Successful": "boolean",
  "FieldResults": [
    {
      "FieldName": "string",
      "FieldStringValue": "string"
    }
  ],
  "TableResults": [
    {
      "Title": "string",
      "Rows": [
        {
          "Cells": [
            {
              "CellHeader": "string",
              "CellValue": "string"
            }
          ]
        }
      ]
    }
  ]
}

ExtractFieldsResponse: object

Result of extracting fields from a document

Successful: boolean

True if successful, false otherwise

Results: FieldValue

Field value results from the extraction operation

FieldValue
Example
{
  "Successful": "boolean",
  "Results": [
    {
      "FieldName": "string",
      "FieldStringValue": "string"
    }
  ]
}

ExtractTablesResponse: object

Result of extracting tables from a document

Successful: boolean

True if successful, false otherwise

TableResults: TableResult

Table value results from the extraction operation

TableResult
Example
{
  "Successful": "boolean",
  "TableResults": [
    {
      "Title": "string",
      "Rows": [
        {
          "Cells": [
            {
              "CellHeader": "string",
              "CellValue": "string"
            }
          ]
        }
      ]
    }
  ]
}

ExtractTextResponse: object

Result of extracting text from a document

Successful: boolean

True if successful, false otherwise

PageResults: ExtractedTextPage

Page results from the extraction operation

ExtractedTextPage
Example
{
  "Successful": "boolean",
  "PageResults": [
    {
      "PageNumber": "integer (int32)",
      "TextResult": "string"
    }
  ]
}

ExtractedBarcodeItem: object

Extracted barcode result

BarcodeType: string

Type of the barcode identified, possible values are: AZTEC, CODABAR, CODE_39, CODE_93, CODE_128, DATA_MATRIX, EAN_8, EAN_13, ITF, MAXICODE, PDF_417, QR_CODE, RSS_14, RSS_EXPANDED, UPC_A, UPC_E, All_1D, UPC_EAN_EXTENSION, MSI, PLESSEY, IMB, UNKNOWN

BarcodeValue: string

Value of the barcode as a string

Example
{
  "BarcodeType": "string",
  "BarcodeValue": "string"
}

ExtractedTextPage: object

Extracted page from an input document

PageNumber: integer (int32)

Page number index, 1-based

TextResult: string

Text content of the page

Example
{
  "PageNumber": "integer (int32)",
  "TextResult": "string"
}

FieldAdvancedValue: object

Field value result of extracting fields from a document

FieldName: string

Name of the field (note that spaces will be replaced with underscore)

FieldStringValue: string

String value of the field that was extractged from the document

Example
{
  "FieldName": "string",
  "FieldStringValue": "string"
}

FieldToExtract: object

Field to extract from a document using AI

FieldName: string

Name of the field to extract

FieldOptional: boolean

Optional: True if the field is optional, false if required (default)

FieldDescription: string

Optional but recommended: Description of the field - use this to describe what the field is, how it is formatted, what is unique about it, etc.

FieldExample: string

Optional: Example label or value of the field

Example
{
  "FieldName": "string",
  "FieldOptional": "boolean",
  "FieldDescription": "string",
  "FieldExample": "string"
}

FieldValue: object

Field value result of extracting fields from a document

FieldName: string

Name of the field (note that spaces will be replaced with underscore)

FieldStringValue: string

String value of the field that was extractged from the document

Example
{
  "FieldName": "string",
  "FieldStringValue": "string"
}

PolicyRule: object

RuleId: string
RuleType: string

Possible values are ALLOW and DENY

RuleDescription: string

Description of the rule in natural language, e.g. Do not allow documents that contain offensive language

Example
{
  "RuleId": "string",
  "RuleType": "string",
  "RuleDescription": "string"
}

PolicyRuleViolation: object

Instances of a policy rule violation

RuleId: string

ID of the rule; if no ID was supplied, the ID is the 1-based index of the rule

RuleViolationRiskScore: number (double)

Risk score between 0.0 and 1.0 where values above 0.5 are increasing levels of risk

RuleViolationRationale: string

AI natural language rationale for why this policy was violated

Example
{
  "RuleId": "string",
  "RuleViolationRiskScore": "number (double)",
  "RuleViolationRationale": "string"
}

SummarizeDocumentResponse: object

Result of summarizing a document

Successful: boolean

True if successful, false otherwise

DocumentSummaryText: string

Summary of the document

Example
{
  "Successful": "boolean",
  "DocumentSummaryText": "string"
}

TableResult: object

Table extracted from a document

Title: string

Title of the table (optional)

Rows: TableResultRow

Rows of the table

TableResultRow
Example
{
  "Title": "string",
  "Rows": [
    {
      "Cells": [
        {
          "CellHeader": "string",
          "CellValue": "string"
        }
      ]
    }
  ]
}

TableResultCell: object

Cell of a row of a table extracted from a document

CellHeader: string

Cell column header

CellValue: string

Cell value as a string

Example
{
  "CellHeader": "string",
  "CellValue": "string"
}

TableResultRow: object

Row of a table extracted from a document

Cells: TableResultCell

Cells in the row

TableResultCell
Example
{
  "Cells": [
    {
      "CellHeader": "string",
      "CellValue": "string"
    }
  ]
}