Document AI API API Reference
Use next-generation AI to extract data, fields, insights and text from documents. Instantly.
Swagger OpenAPI Specification | .NET Framework Client | .NET Core Client | Java Client | Node.JS Client | Python Client | Drupal Client
Terms of Service: https://portal.cloudmersive.com/terms-of-service
Version: v1
Authentication
Apikey
API Key Authentication
Analyze
Enforce Policies to a Document to allow or block it using Advanced AI
Enforce Policies to a Document to allow or block it using Advanced AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.
Input request, including document and policy rules
Code Example:
Request Content-Types: application/json, text/json, application/*+json
Request Example
{
"InputFile": "string (byte)",
"Rules": [
{
"RuleId": "string",
"RuleType": "string",
"RuleDescription": "string"
}
]
}
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"CleanResult": "boolean",
"RiskScore": "number (double)",
"RuleViolations": [
{
"RuleId": "string",
"RuleViolationRiskScore": "number (double)",
"RuleViolationRationale": "string"
}
]
}
Extract
Extract Text from a Document using AI
Extract raw text from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Supports a wide range of languages. Consumes 100 API calls per page.
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Input document, or photos of a document, to extract data from
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"PageResults": [
{
"PageNumber": "integer (int32)",
"TextResult": "string"
}
]
}
Extract Field Values from a Document using AI
Extract Field Values (e.g. Invoice Number, Invoice Date, Business Card Phone Number, etc.) from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.
Desired fields to extract, comma separated
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Input document, or photos of a document, to extract data from
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"Results": [
{
"FieldName": "string",
"FieldStringValue": "string"
}
]
}
Extract Field Values from a Document using Advanced AI
Extract Field Values (e.g. Invoice Number, Invoice Date, Business Card Phone Number, etc.) from a document using Advanced AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.
Input request, including document file as byte array, and information on which fields to extract
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Code Example:
Request Content-Types: application/json, text/json, application/*+json
Request Example
{
"InputFile": "string (byte)",
"FieldsToExtract": [
{
"FieldName": "string",
"FieldOptional": "boolean",
"FieldDescription": "string",
"FieldExample": "string"
}
],
"MaximumPagesProcessed": "integer (int32)",
"Preprocessing": "string",
"ResultCrossCheck": "string",
"RotateImageDegrees": "number (double)"
}
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"Results": [
{
"FieldName": "string",
"FieldStringValue": "string"
}
],
"ConfidenceScore": "number (double)"
}
Extract Tables of Data from a Document using AI
Extract Tables, comprised of rows and columns of data, from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumeds 100 API calls per page.
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Input document, or photos of a document, to extract data from
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"TableResults": [
{
"Title": "string",
"Rows": [
{
"Cells": [
{
"CellHeader": "string",
"CellValue": "string"
}
]
}
]
}
]
}
Extract Barcodes of from a Document using AI
Extract all barcodes from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Input document, or photos of a document, to extract data from
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"BarcodeResults": [
{
"BarcodeType": "string",
"BarcodeValue": "string"
}
]
}
Extract All Fields and Tables of Data from a Document using AI
Extract all Fields and Tables, comprised of rows and columns of data, from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Input document, or photos of a document, to extract data from
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"FieldResults": [
{
"FieldName": "string",
"FieldStringValue": "string"
}
],
"TableResults": [
{
"Title": "string",
"Rows": [
{
"Cells": [
{
"CellHeader": "string",
"CellValue": "string"
}
]
}
]
}
]
}
Extract Classification or Category from a Document using AI
Extract Classification or Category (e.g. Invoice, Receipt, Tax Form, or Form 1040, Form 1040 EZ, etc.) from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.
Desired classification to extract
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Input document, or photos of a document, to extract data from
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"DocumentCategoryResult": "string"
}
Extract Classification or Category from a Document using Advanced AI
Extract Classification or Category (e.g. Invoice, Receipt, Tax Form, or Form 1040, Form 1040 EZ, etc.) from a document using Advanced AI. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.
Input request to perform the classification on
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Code Example:
Request Content-Types: application/json, text/json, application/*+json
Request Example
{
"InputFile": "string (byte)",
"Categories": [
{
"CategoryName": "string",
"CategoryDescription": "string"
}
],
"Preprocessing": "string",
"ResultCrossCheck": "string",
"MaximumPagesProcessed": "integer (int32)",
"RotateImageDegrees": "number (double)"
}
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"DocumentCategoryResult": "string",
"ConfidenceScore": "number (double)"
}
Extract Summary from a Document using AI
Creates a 1 paragraph summary of the input document using Artificial Intelligence. Input document formats supported include DOCX, PDF, PNG and JPG. Consumes 100 API calls per page.
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Input document, or photos of a document, to extract data from
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"DocumentSummaryText": "string"
}
RunBatchJob
Extract Text from a Document using AI as a Batch Job
Creates an async batch job for processing a large document as an AI batch job. Input document formats supported include DOCX, PDF, PNG and JPG. Supports a wide range of languages. Requires Managed Instance or Private Cloud deployment.
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Input document, or photos of a document, to extract data from
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"AsyncJobID": "string"
}
Extract Field Values from a Document using Advanced AI as a Batch Job
Creates an async batch job for processing a large document as an AI batch job. Extract Field Values (e.g. Invoice Number, Invoice Date, Business Card Phone Number, etc.) from a document using Advanced AI. Input document formats supported include DOCX, PDF, PNG and JPG. Requires Managed Instance or Private Cloud deployment.
undefined
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Code Example:
Request Content-Types: application/json, text/json, application/*+json
Request Example
{
"InputFile": "string (byte)",
"FieldsToExtract": [
{
"FieldName": "string",
"FieldOptional": "boolean",
"FieldDescription": "string",
"FieldExample": "string"
}
],
"MaximumPagesProcessed": "integer (int32)",
"Preprocessing": "string",
"ResultCrossCheck": "string",
"RotateImageDegrees": "number (double)"
}
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"AsyncJobID": "string"
}
Extract All Fields and Tables of Data from a Document using AI as a Batch Job
Creates an async batch job for processing a large document as an AI batch job. Extract all Fields and Tables, comprised of rows and columns of data, from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Requires Managed Instance or Private Cloud deployment.
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Input document, or photos of a document, to extract data from
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"AsyncJobID": "string"
}
Extract Classification or Category from a Document using AI as a Batch Job
Creates an async batch job for processing a large document as an AI batch job. Extract Classification or Category (e.g. Invoice, Receipt, Tax Form, or Form 1040, Form 1040 EZ, etc.) from a document using AI. Input document formats supported include DOCX, PDF, PNG and JPG. Requires Managed Instance or Private Cloud deployment.
Desired classification to extract
Optional; Recognition mode - Advanced (default) provides the highest accuracy but slower speed, while Normal provides faster response but lower accuracy for low quality images
Input document, or photos of a document, to extract data from
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"AsyncJobID": "string"
}
Get the status and result of an Extract Document Batch Job
Returns the result of the Async Job - possible states can be STARTED or COMPLETED. This API is only available for Cloudmersive Managed Instance and Private Cloud deployments.
(no description)
Code Example:
OK
Response Content-Types: text/plain, application/json, text/json
Response Example (200 OK)
{
"Successful": "boolean",
"AsyncJobStatus": "string",
"AsyncJobID": "string",
"ExtractTextResult": {
"Successful": "boolean",
"PageResults": [
{
"PageNumber": "integer (int32)",
"TextResult": "string"
}
]
},
"ExtractFieldsAndTablesResult": {
"Successful": "boolean",
"FieldResults": [
{
"FieldName": "string",
"FieldStringValue": "string"
}
],
"TableResults": [
{
"Title": "string",
"Rows": [
{
"Cells": [
{
"CellHeader": "string",
"CellValue": "string"
}
]
}
]
}
]
},
"ExtractFieldsResult": {
"Successful": "boolean",
"Results": [
{
"FieldName": "string",
"FieldStringValue": "string"
}
]
},
"ExtractClassificationResult": {
"Successful": "boolean",
"DocumentCategoryResult": "string"
},
"ErrorMessage": "string"
}
Schema Definitions
AdvancedExtractClassificationRequest: object
Request to perform an AI document classification on a document
- InputFile: string (byte)
-
Input document file to perform the operation on as a byte array
- Categories: DocumentCategories
-
Possible categories for the document
-
DocumentCategories - Preprocessing: string
-
Optional: Set the level of image pre-processing to enhance accuracy. Possible values are 'Auto', 'SmoothEdges', 'SmoothEdgesPlus', 'Compatability' and 'None'. Default is Auto. Set to SmoothEdges to smooth harsh edges in the input image to enhance recognition accuracy. Set to SmoothEdgesPlus to smooth harsh edges to a higher degree. Set to Compatability for maximum PDF feature compatability.
- ResultCrossCheck: string
-
Optional: Set the level of output accuracy cross-checking to perform on the input. Possible values are 'None', 'Advanced', 'Ultra' and 'Hyper'. Default is None. Ultra and Hyper will produce the highest accuracy but at the cost of longer processing times.
- MaximumPagesProcessed: integer (int32)
-
Optional: Limit the number of pages processed
- RotateImageDegrees: number (double)
-
Optional: Rotate the input image before recognition by the specified number of degrees; valid values range from -360 to +360.
Example
{
"InputFile": "string (byte)",
"Categories": [
{
"CategoryName": "string",
"CategoryDescription": "string"
}
],
"Preprocessing": "string",
"ResultCrossCheck": "string",
"MaximumPagesProcessed": "integer (int32)",
"RotateImageDegrees": "number (double)"
}
AdvancedExtractFieldsRequest: object
Request to perform an AI field extraction on a document
- InputFile: string (byte)
-
Input document file to perform the operation on as a byte array
- FieldsToExtract: FieldToExtract
-
Fields to extract from the document
-
FieldToExtract - MaximumPagesProcessed: integer (int32)
-
Optional: Limit the number of pages processed
- Preprocessing: string
-
Optional: Set the level of image pre-processing to enhance accuracy. Possible values are 'Auto', 'SmoothEdges', 'SmoothEdgesPlus', 'ContrastEdges', 'ContrastEdgesPlus', 'Invert', 'Binarize', 'Compatability' and 'None'. Default is Auto. Set to SmoothEdges to smooth harsh edges in the input image to enhance recognition accuracy. Set to SmoothEdgesPlus to smooth harsh edges to a higher degree. Set to ContrastEdges and ContrastEdgesPlus to enhance contrast and readability for low quality black and white or grayscale images. Set to Invert to invert the input image. Set to Binarize to binarize the input image. Set to Compatability for maximum PDF feature compatability.
- ResultCrossCheck: string
-
Optional: Set the level of output accuracy cross-checking to perform on the input. Possible values are 'None', 'Advanced' and 'Ultra'. Default is None. Ultra will produce the highest accuracy but at the cost of longer processing times.
- RotateImageDegrees: number (double)
-
Optional: Rotate the input image before recognition by the specified number of degrees; valid values range from -360 to +360.
Example
{
"InputFile": "string (byte)",
"FieldsToExtract": [
{
"FieldName": "string",
"FieldOptional": "boolean",
"FieldDescription": "string",
"FieldExample": "string"
}
],
"MaximumPagesProcessed": "integer (int32)",
"Preprocessing": "string",
"ResultCrossCheck": "string",
"RotateImageDegrees": "number (double)"
}
DocumentAdvancedClassificationResult: object
Result of classifying a document using AI
- Successful: boolean
-
True if successful, false otherwise
- DocumentCategoryResult: string
-
Category applied to the document; if a category could not be identified then "other" will be used. Spaces are replaced with underscores.
- ConfidenceScore: number (double)
-
Confidence score between 0.0 and 1.0, where values > 0.8 indicate high confidence
Example
{
"Successful": "boolean",
"DocumentCategoryResult": "string",
"ConfidenceScore": "number (double)"
}
DocumentCategories: object
Document category option
- CategoryName: string
-
Name of the classification
- CategoryDescription: string
-
Optional but recommended: Description of the classification in natural langugage
Example
{
"CategoryName": "string",
"CategoryDescription": "string"
}
DocumentClassificationResult: object
Result of classifying a document using AI
- Successful: boolean
-
True if successful, false otherwise
- DocumentCategoryResult: string
-
Category applied to the document; if a category could not be identified then "other" will be used. Spaces are replaced with underscores.
Example
{
"Successful": "boolean",
"DocumentCategoryResult": "string"
}
DocumentPolicyRequest: object
Request to analyze a document
- InputFile: string (byte)
-
Input file as a byte array
- Rules: PolicyRule
-
Rules to apply to the document
-
PolicyRule
Example
{
"InputFile": "string (byte)",
"Rules": [
{
"RuleId": "string",
"RuleType": "string",
"RuleDescription": "string"
}
]
}
DocumentPolicyResult: object
Result of performing a document policy enforcement operation
- CleanResult: boolean
-
True if the document complies with all of the policies, and false if it does not
- RiskScore: number (double)
-
Risk score between 0.0 and 1.0 where values above 0.5 are increasing levels of risk
- RuleViolations: PolicyRuleViolation
-
Policy violations
-
PolicyRuleViolation
Example
{
"CleanResult": "boolean",
"RiskScore": "number (double)",
"RuleViolations": [
{
"RuleId": "string",
"RuleViolationRiskScore": "number (double)",
"RuleViolationRationale": "string"
}
]
}
ExtractBarcodesAiResponse: object
Result of extracting barcodes from a document
- Successful: boolean
-
True if successful, false otherwise
- BarcodeResults: ExtractedBarcodeItem
-
Table value results from the extraction operation
-
ExtractedBarcodeItem
Example
{
"Successful": "boolean",
"BarcodeResults": [
{
"BarcodeType": "string",
"BarcodeValue": "string"
}
]
}
ExtractDocumentBatchJobResult: object
Result of performing a split document batch job
- Successful: boolean
-
True if successful, false otherwise
- AsyncJobID: string
-
When creating a job, an Async Job ID is returned. Use the GetAsyncJobStatus API to check on the status of this job using the AsyncJobID and get the result when it finishes
Example
{
"Successful": "boolean",
"AsyncJobID": "string"
}
ExtractDocumentJobStatusResult: object
Result of performing a batch job operation
- Successful: boolean
-
True if the operation to check the status of the job was successful, false otherwise
- AsyncJobStatus: string
-
Returns the job status of the Async Job, if applicable. Possible states are STARTED and COMPLETED
- AsyncJobID: string
-
Job ID
- ExtractTextResult: ExtractTextResponse
- ExtractFieldsAndTablesResult: ExtractFieldsAndTablesResponse
- ExtractFieldsResult: ExtractFieldsResponse
- ExtractClassificationResult: DocumentClassificationResult
- ErrorMessage: string
-
Error message (if any)
Example
{
"Successful": "boolean",
"AsyncJobStatus": "string",
"AsyncJobID": "string",
"ExtractTextResult": {
"Successful": "boolean",
"PageResults": [
{
"PageNumber": "integer (int32)",
"TextResult": "string"
}
]
},
"ExtractFieldsAndTablesResult": {
"Successful": "boolean",
"FieldResults": [
{
"FieldName": "string",
"FieldStringValue": "string"
}
],
"TableResults": [
{
"Title": "string",
"Rows": [
{
"Cells": [
{
"CellHeader": "string",
"CellValue": "string"
}
]
}
]
}
]
},
"ExtractFieldsResult": {
"Successful": "boolean",
"Results": [
{
"FieldName": "string",
"FieldStringValue": "string"
}
]
},
"ExtractClassificationResult": {
"Successful": "boolean",
"DocumentCategoryResult": "string"
},
"ErrorMessage": "string"
}
ExtractFieldsAdvancedResponse: object
Result of extracting fields from a document
- Successful: boolean
-
True if successful, false otherwise
- Results: FieldAdvancedValue
-
Field value results from the extraction operation
-
FieldAdvancedValue - ConfidenceScore: number (double)
-
Confidence score between 0.0 and 1.0, where values > 0.8 indicate high confidence
Example
{
"Successful": "boolean",
"Results": [
{
"FieldName": "string",
"FieldStringValue": "string"
}
],
"ConfidenceScore": "number (double)"
}
ExtractFieldsAndTablesResponse: object
Result of extracting fields from a document
- Successful: boolean
-
True if successful, false otherwise
- FieldResults: FieldValue
-
Field value results from the extraction operation
-
FieldValue - TableResults: TableResult
-
Table value results from the extraction operation
-
TableResult
Example
{
"Successful": "boolean",
"FieldResults": [
{
"FieldName": "string",
"FieldStringValue": "string"
}
],
"TableResults": [
{
"Title": "string",
"Rows": [
{
"Cells": [
{
"CellHeader": "string",
"CellValue": "string"
}
]
}
]
}
]
}
ExtractFieldsResponse: object
Result of extracting fields from a document
- Successful: boolean
-
True if successful, false otherwise
- Results: FieldValue
-
Field value results from the extraction operation
-
FieldValue
Example
{
"Successful": "boolean",
"Results": [
{
"FieldName": "string",
"FieldStringValue": "string"
}
]
}
ExtractTablesResponse: object
Result of extracting tables from a document
- Successful: boolean
-
True if successful, false otherwise
- TableResults: TableResult
-
Table value results from the extraction operation
-
TableResult
Example
{
"Successful": "boolean",
"TableResults": [
{
"Title": "string",
"Rows": [
{
"Cells": [
{
"CellHeader": "string",
"CellValue": "string"
}
]
}
]
}
]
}
ExtractTextResponse: object
Result of extracting text from a document
- Successful: boolean
-
True if successful, false otherwise
- PageResults: ExtractedTextPage
-
Page results from the extraction operation
-
ExtractedTextPage
Example
{
"Successful": "boolean",
"PageResults": [
{
"PageNumber": "integer (int32)",
"TextResult": "string"
}
]
}
ExtractedBarcodeItem: object
Extracted barcode result
- BarcodeType: string
-
Type of the barcode identified, possible values are: AZTEC, CODABAR, CODE_39, CODE_93, CODE_128, DATA_MATRIX, EAN_8, EAN_13, ITF, MAXICODE, PDF_417, QR_CODE, RSS_14, RSS_EXPANDED, UPC_A, UPC_E, All_1D, UPC_EAN_EXTENSION, MSI, PLESSEY, IMB, UNKNOWN
- BarcodeValue: string
-
Value of the barcode as a string
Example
{
"BarcodeType": "string",
"BarcodeValue": "string"
}
ExtractedTextPage: object
Extracted page from an input document
- PageNumber: integer (int32)
-
Page number index, 1-based
- TextResult: string
-
Text content of the page
Example
{
"PageNumber": "integer (int32)",
"TextResult": "string"
}
FieldAdvancedValue: object
Field value result of extracting fields from a document
- FieldName: string
-
Name of the field (note that spaces will be replaced with underscore)
- FieldStringValue: string
-
String value of the field that was extractged from the document
Example
{
"FieldName": "string",
"FieldStringValue": "string"
}
FieldToExtract: object
Field to extract from a document using AI
- FieldName: string
-
Name of the field to extract
- FieldOptional: boolean
-
Optional: True if the field is optional, false if required (default)
- FieldDescription: string
-
Optional but recommended: Description of the field - use this to describe what the field is, how it is formatted, what is unique about it, etc.
- FieldExample: string
-
Optional: Example label or value of the field
Example
{
"FieldName": "string",
"FieldOptional": "boolean",
"FieldDescription": "string",
"FieldExample": "string"
}
FieldValue: object
Field value result of extracting fields from a document
- FieldName: string
-
Name of the field (note that spaces will be replaced with underscore)
- FieldStringValue: string
-
String value of the field that was extractged from the document
Example
{
"FieldName": "string",
"FieldStringValue": "string"
}
PolicyRule: object
- RuleId: string
- RuleType: string
-
Possible values are ALLOW and DENY
- RuleDescription: string
-
Description of the rule in natural language, e.g. Do not allow documents that contain offensive language
Example
{
"RuleId": "string",
"RuleType": "string",
"RuleDescription": "string"
}
PolicyRuleViolation: object
Instances of a policy rule violation
- RuleId: string
-
ID of the rule; if no ID was supplied, the ID is the 1-based index of the rule
- RuleViolationRiskScore: number (double)
-
Risk score between 0.0 and 1.0 where values above 0.5 are increasing levels of risk
- RuleViolationRationale: string
-
AI natural language rationale for why this policy was violated
Example
{
"RuleId": "string",
"RuleViolationRiskScore": "number (double)",
"RuleViolationRationale": "string"
}
SummarizeDocumentResponse: object
Result of summarizing a document
- Successful: boolean
-
True if successful, false otherwise
- DocumentSummaryText: string
-
Summary of the document
Example
{
"Successful": "boolean",
"DocumentSummaryText": "string"
}
TableResult: object
Table extracted from a document
- Title: string
-
Title of the table (optional)
- Rows: TableResultRow
-
Rows of the table
-
TableResultRow
Example
{
"Title": "string",
"Rows": [
{
"Cells": [
{
"CellHeader": "string",
"CellValue": "string"
}
]
}
]
}
TableResultCell: object
Cell of a row of a table extracted from a document
- CellHeader: string
-
Cell column header
- CellValue: string
-
Cell value as a string
Example
{
"CellHeader": "string",
"CellValue": "string"
}
TableResultRow: object
Row of a table extracted from a document
- Cells: TableResultCell
-
Cells in the row
-
TableResultCell
Example
{
"Cells": [
{
"CellHeader": "string",
"CellValue": "string"
}
]
}